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Abstract: Uncertainty can be separated into
aleatoric (data) and epistemic (model) uncertainty.
We compare two methods and test whether epis-
temic (EU) is independent of aleatoric (AU) uncer-
tainty in three experiments.
We find that disentanglement does not work.

Method 1. Information Theoretic (IT) Disentanglement

I(Y ; Θ|x,D)︸ ︷︷ ︸
Epistemic

≈ H[EΘ[p(y|x, θ)]]︸ ︷︷ ︸
Total

−EΘ[H[p(y|x, θ)]]︸ ︷︷ ︸
Aleatoric

(1)

IT disentanglement [1] is the commonly used method for dis-
entanglement. It is easy to implement, but EU is computed
with a very rough approximation, which could be a problem
in practice.

( a ) ( b )

AU (a) and EU (b) using IT. With
high AU, EU is underestimated. [2]

Method 2. Gaussian Logits (GL) Disentanglement
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GL disentanglement [3] represents AU with variance in the logits. With a BNN we can use the
variance of the mean to make predictions with EU. Is this better than IT disentanglement?

Experiment 1. EU should reduce with additional training
data. AU should stay the same.
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Expectation (a) vs. Reality (b) of changing dataset size. AU
increases for larger datasets?!
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Toy data - increasing dataset size. IT exchanges Epi for Ale.
GL predicts similar for Ale and Epi.

Experiment 2. AU should increase when labels are
random. EU should stay similar.
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Expectation (a) vs. Reality (b) for adding label noise. With GL
the EU increases a lot with noisy lables?!
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Toy data - increasing label noise. IT: Epi decreases. GL: Epi
follows Ale.

Experiment 3. EU should be high when samples are
out-of-distribution (OoD). AU should be random.
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Expectation:
OoD samples → high EU
→ good ROC

Reality: Good ROC-AUC on OOD
detection for AU and EU?!
CIFAR10, σx̄ ≈ .002 GL AU GL EU IT AU IT EU
MC-Dropout 0.644 0.642 0.651 0.649
MC-DropConnect 0.650 0.657 0.657 0.658
Flipout 0.626 0.629 0.625 0.579
Deep Ensembles 0.679 0.709 0.689 0.701

FashionMNIST, σx̄ ≈ .003 GL AU GL EU IT AU IT EU
MC-Dropout 0.753 0.769 0.761 0.764
MC-DropConnect 0.748 0.780 0.766 0.746
Flipout 0.649 0.673 0.661 0.579
Deep Ensembles 0.768 0.811 0.780 0.787

Wine, σx̄ ≈ .010 GL AU GL EU IT AU IT EU
MC-Dropout 0.971 0.961 0.943 0.670
MC-DropConnect 0.959 0.957 0.954 0.883
Flipout 0.981 0.981 0.982 0.974
Deep Ensembles 0.985 0.984 0.981 0.952

Takeaways

1.We cannot separate aleatoric and epistemic uncertainty.
2.GL EU is good for OoD detection because it includes AU.
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