Abstract: Uncertainty can be separated into
aleatoric (data) and epistemic (model) uncertainty.
We compare two methods and test whether epis-
! temic (EU) is independent of aleatoric (AU) uncer-
tainty in three experiments.

We find that disentanglement does not work.

How disentangled are your
classification uncertainties?
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Method 2. Gaussian Logits (GL) Disentanglement
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Method 1. Information Theoretic (IT) Disentanglement
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IT dlsentanglement [1] IS the COmmOnly used method for dis- (U 71"‘\W1"‘\<w
entanglement. It is easy to implement, but EU is computed N Zaa\ N Zaa\ Sampling Softmax
with a very rough approximation, which could be a problem (a)
in practice. AU (a) and EU (b) using IT. With GL disentanglement [3] represents AU with variance in the logits. With a BNN we can use the
high AU, EU is underestimated. [2] variance of the mean to make predictions with EU. Is this better than IT disentanglement?
Experiment 1. EU should reduce with additional training Experiment 2. AU should increase when labels are Experiment 3. EU should be high when samples are
data. AU should stay the same. random. EU should stay similar. out-of-distribution (OoD). AU should be random.
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Toy data - increasing dataset size. |IT exchanges Epi for Ale. Toy data - increasing label noise. IT: Epi decreases. GL: Epl
GL predicts similar for Ale and Epi. follows Ale.




