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What is Out-of-Distribution detection?

Machine Learning assumes that we do predictions on data similar to what the

model is trained on, but this is often not the case. We call dissimilar samples

Out-of-Distribution (OoD).

They might come from mind-wandering, off-task activities or a user being

asleep. They could also come from differences in preprocessing, disconnected

electrodes, or changes in environmental noise.

It is impossible to make correct classifications in these cases. Instead, we try to

detect them based on the uncertainty of the model.

This has the potential to be better than standard artifact rejection, as it is

specific to the model, but general for any artifact.
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Figure 1. We aim to detect the known classes,

while rejecting unfamiliar OoD samples.

Simulating OoD Data
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Figure 2. Leave-one-class-out OoD detection. OoD

samples are created by removing one class from the

training data.

Methods for detecting OoD Data

Class confidence (entropy)

– Softmax

Model uncertainty – Deep

Ensembles & MC Dropout
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Distance in latent space –

DUQ & KNN
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Density in latent space –

DDU & Energy score

Other sources of OoD
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Figure 4. We can simulate different kinds of OoD. Some

easier to detect than others. What do we need for

robust BCIs?

Results
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(a) ROC-curves for leave-one-class-out

OoD detection. On all other datasets

this works well, but for Motor-Imagery

BCI this is nearly random.
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(b) Results of different OoD detection methods.

Leave-one-class-out OoD detection is difficult

for BCIs!

Figure 5. Primary results. Leave-one-class out OoD detection works in other fields, but

is difficult for BCIs!
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(a) Participants with good classifications

also get better OoD detection.

ρ = 0.5, p < 0.01
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(b) Is one class more difficult to OoD

detect than the other? No!

Figure 6. Further analysis. Bad OoD detection cannot be attributed to a specific class,

but does correlate with classification performance.

Conclusion

Out-of-Distribution detection is critical for real-life BCIs

Currently available OoD detection methods are not sufficient for

detecting off-task thoughts

What kind of Out-of-Distribution you use matters a lot

We need to define a set of Out-of-Distribution detection tasks that

appropriately represent real-life scenarios.

What do you think should be detected with OoD detection?
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